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Chapter 11
Design of State Variable Feedback Systems

This chapter deals with the design of controllers utilizing state 
feedback. We will consider three major subjects: Controllability and 

observability and then the procedure for determining an optimal 
control system. Ackermann’s formula can be used to determine the 
state variable feedback gain matrix to place the system poles at the 

desired locations. The closed-loop system pole locations can be 
arbitrarily placed if and only if the system is controllable.

When the full state is not available for feedback, we utilize an
observer. The observer design process is described and the 
applicability of Ackermann’s formula is established. The state 
variable compensator is obtained by connecting the full-state 

feedback law to the observer.
We consider optimal control system design and then describe the 
use of internal model design to achieve prescribed steady-state 

response to selected input commands.
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Pole Placement Using State Feedback

• The state-space design method is based on the pole-placement 
method and the quadratic optimal regulator method. The pole 
placement method is similar to the root-locus method. In that we 
place closed-loop poles at desired locations. The basic difference is 
that in the root-locus design we place only the dominant closed loop 
poles at the desired locations, while in the pole-placement method 
we place all closed-loop poles at desired locations.

• The state variable feedback may be used to achieve the desired pole 
locations of the closed-loop transfer function T(s).

• The approach is based on the feedback of all the state variables, and 
therefore u = Kx.

• When using this state variable feedback, the roots of the 
characteristic equation are placed where the transient performance 
meets the desired response.
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State Variable Compensator Employing Full-State 
Feedback in Series with a Full State Observer
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Controllability and Observability
• The concept of controllability and observability were 

introduced by Kalman in 1960. 

• They play an important role in the design of control 
systems in state space. 

• The conditions of controllability and observability may 
govern the existence of a complete solution to the 
control system design problem. 

• The solution of the problem may not exist if the system is 
not controllable. 
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Controllability
• A system described by the matrices (A, B) can be said to be controllable 

if there exists an unconstrained control u that can transfer any initial 
state x(0) to any other desired location x(t). That means that over time, 
some or all of the scalar time functions in u can be arbitrarily large in 
magnitude.

• Another method of determining whether a system is controllable is to 
draw the state variable flow diagram and determine whether the control 
signal, u, has a path to each state variable. If a path to each state exists, 
the system may be controllable.
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Example of a Controllable system!
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Continue..

• Uncontrollable system has a subsystem that is physically disconnected from 
the input.

• For a partially controllable system, if the uncontrollable modes are stable and 
the unstable modes are controllable, the system is said to be stabilized. For 
example such system

• Is not controllable. The stable mode that corresponds to the eigenvalue of -1 
is not controllable. The unstable mode that corresponds to the eigenvalue of 1 
is controllable. Such a system can be made stable by the use of a suitable 
feedback. Therefore the system is stabilizable.
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Observability
• All the roots of the characteristic equation can be placed where desired 

in the s-plane if, and only if, a system is observable and controllable.
• Observability refers to the ability to estimate a state variable. Thus we 

say a system may be observable if the output has a component due to 
each state variable.

• A system is observable if, and only if, there exists a finite time T such 
that the initial state x(t) can be determined from the observation history 
y(t) given the control u(t). Consider the single-input, single-output 
system
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Example of Observable System!
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Is this System Controllable and Observable?
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Full-State Feedback Control System
to achieve the desired pole locations of the closed loop system

First we should assume that all the states are available for feedback
The system input u(t) is given by

u = -Kx
Determining the gain matrix K is the objective of the full-state 

feedback design procedure
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The closed-loop system has no input. The objective is to maintain zero 
output. Because of disturbances the output will deviate from zero. The 
nonzero output will be returned to zero reference input because of the 

state feedback scheme.
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Design of a Third Order System

[ ]

( )

[ ]

( )( )

( )( )

overshoot no has response step The
8.170;1.79;4.9 require Then we

8.1721.824.148.4366.9

hav  then we6, chose  weIf ;1
8.0
44

 thens, 1  toequal  timesettling a want  weIf overshoot. minimalfor  0.8 Chose
;2 :equation sticcharacteri desired  theChose

)2()3()5(BK]-[ADet  isequation  sticcharacteri The

  )-(-5          )-(-3           )-(-2
1                         0                       0
0                         1                       0

  BK-A

ismatrix feedback  state The x;BK-ABKx-Axx

-Kx and      K :isK matrix feedback   variablestate  theIf

BAx 
1
0
0

 x
5-   3-   2-
1     0       0
0     1       0

x

/;/; :as  variablesstate Select the

235

321

232

22
12

2
3

3
321

.
321

.

22
321

2

2

3

3

===
+++=+++

=≅==

=
+++

++++++=
















=

==

==

+=















+
















=

===

=+++

kkk
ssssss

T

sss

ksksks

kkk

ukkk

uu

dtydxdtdyxyx

uy
dt
dy

dt
yd

dt
yd

n
nn

s

nnn

ω
ωξω

ξ
ξωωξω



14

Ackermann’s Formula
For a single-input, single-output system, Ackermann’s formula is useful 

for determining the state variable feedback matrix
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Observer Design
If the system is completely observable with a given set of outputs, then 

it is possible to determine or estimate the states that are not directly 
measured
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E11.3: A system is described by the matrix equation. Determine 
whether the system is controllable and observable.
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E11.4: A system is described by the matrix equation. Determine 
whether the system is controllable and observable.
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