Chapter 11
Design of State Variable Feedback Systems

This chapter deals with the design of controllers utilizing state
feedback. We will consider three major subjects: Controllability and
observability and then the procedure for determining an optimal
control system. Ackermann’s formula can be used to determine the
state variable feedback gain matrix to place the system poles at the
desired locations. The closed-loop system pole locations can be
arbitrarily placed if and only if the system is controllable.
When the full state is not available for feedback, we utilize an
observer. The observer design process is described and the
applicability of Ackermann’s formula is established. The state
variable compensator is obtained by connecting the full-state
feedback law to the observer.

We consider optimal control system design and then describe the
use of internal model design to achieve prescribed steady-state

response to selected input commands.



Pole Placement Using State Feedback

The state-space design method is based on the pole-placement
method and the quadratic optimal regulator method. The pole
placement method is similar to the root-locus method. In that we
place closed-loop poles at desired locations. The basic difference is
that in the root-locus design we place only the dominant closed loop
poles at the desired locations, while in the pole-placement method
we place all closed-loop poles at desired locations.

The state variable feedback may be used to achieve the desired pole
locations of the closed-loop transfer function T(s).

The approach is based on the feedback of all the state variables, and
therefore u = Kx.

When using this state variable feedback, the roots of the
characteristic equation are placed where the transient performance
meets the desired response.



State Variable Compensator Employing Full-State
Feedback in Series with a Full State Observer
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Controllability and Observability

The concept of controllability and observability were
Introduced by Kalman in 1960.

They play an important role in the design of control
systems in state space.

The conditions of controllability and observability may
govern the existence of a complete solution to the
control system design problem.

The solution of the problem may not exist if the system is
not controllable.



Controllability

A system described by the matrices (A, B) can be said to be controllable
if there exists an unconstrained control u that can transfer any initial
state x(0) to any other desired location x(f). That means that over time,
some or all of the scalar time functions in u can be arbitrarily large in
magnitude.

X = AX + Bu

P, = [B ABA’B.. A" B] (Controllability matrix P)

If P, is nonzero, the system is controllable

Another method of determining whether a system is controllable is to
draw the state variable flow diagram and determine whether the control
signal, u, has a path to each state variable. If a path to each state exists,
the system may be controllable.



Example of a Controllable system!

Y(s) _T(s) = |
U(s) s> +a,s° +a;s+a,
0o 1 0 | [O]
x=[0 0 1 |x+|0]u
-ay -a; -a, 1
0 0 s
B=|0|, AB=|1 | A’B=| -a,
_1 | | -dy | _(a% —a )_
0 0 o
P, =10 1 -a, Determinant of P, 1s nonzero
L - a, (a% —al)




Continue..

Uncontrollable system has a subsystem that is physically disconnected from
the input.

For a partially controllable system, if the uncontrollable modes are stable and
the unstable modes are controllable, the system is said to be stabilized. For

example such system

xi| 1 0ol[x] [

X2 a -7
Is not controllable. The stable mode that corresponds to the eigenvalue of -1
is not controllable. The unstable mode that corresponds to the eigenvalue of 1
is controllable. Such a system can be made stable by the use of a suitable
feedback. Therefore the system is stabilizable.



Observability

« All the roots of the characteristic equation can be placed where desired
in the s-plane if, and only if, a system is observable and controllable.

« Observability refers to the ability to estimate a state variable. Thus we
say a system may be observable if the output has a component due to
each state variable.

« A system is observable if, and only if, there exists a finite time T such
that the initial state x(f) can be determined from the observation history
y(f) given the control u(f). Consider the single-input, single-output
system

x = Ax + Bu and y = Cx
This system is observable when the determinant of Q

1S nonzero, where

C
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Example of Observable System!

] andC:[l 0 O]

CA=[0 1 0]andCA?=[0 0 1]
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Is this System Controllable and Observable?

“ Al

0 1
Since the rank of the matrix [B AB] = L J 1s 2,
the system 1s fully state controllable
1 1
To test the observability condition, examine the rank of [C AC] = {O J 1s 2,

the system 1s observable
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Full-State Feedback Control System

to achieve the desired pole locations of the closed loop system
First we should assume that all the states are available for feedback
The system input u(t) is given by
u = -Kx
Determining the gain matrix K is the objective of the full-state
feedhack design procedure

x = AX+ Bu

System Model

Control Law

K
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The closed-loop system has no input. The objective is to maintain zero

output. Because of disturbances the output will deviate from zero. The

nonzero output will be returned to zero reference input because of the
state feedback scheme.

i:Ax+Bu; u=-Ku

x = Ax + Bu = Ax - BKx = (A - BK)x
det(Ml - (A-BK))=0

If all the roots of the characteristic equation
lie in the left half - plane then the closed loop

systemis stable.

x(t) = e A BKY y(10) 5 0 ast —

Given the pair (A, B), we can determine K to place
all the system closed loop poles in the left half plane
if the system is completely controllable.

The addition of a reference input can be considered as
u(t) = -Kx(¢) + Nr(t) where r(t) 1s the reference input.

When r(¢) = 0 for allz ) ¢, the control design problemis regular 12



Design of a Third Order System

d3y+5d2y+3@+2y:u

d>  ar* dt

Select the state variablesas:x; = y;x, =dy/ dt;x3:d2y/ dt?
0O 1 0 0

x={0 0 1|x+|0|u=Ax+Bu
-2 -3 -5 1

If the state variable feedback matrix Kis:K =[k; k, ksJandu =-Kx

x = Ax - BKx = (A - BK)x; The state feedback matrix is
0 1 0
[A-BK]=|0 0 1
(-2-ky) (-3-k2) (-5-k3)
The characteristic equation is Det[A - BK] = s>+ (5+ k3 )S2 +B+ky)s+2+kp)

Chose the desired characteristic equation : (32 +28w,s + a),% Xs +éw, ),

Chose & = 0.8 for minimal overshoot. If we want a settling time equal to 1 s, then

T, = 4 = 1; If we chose w,, = 6, then we hav
(o, 0.8w,

(52 +9.6s+36Xs +4.8)=s" +14.45% +82.15+172.8

Then we require k; =9.4;ky =79.1;k3 =170.8

The step response has no overshoot
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Ackermann’s Formula

For a single-input, single-output system, Ackermann’s formula is useful
for determining the state variable feedback matrix

K — [kl k2 kn]

u =-Kx

Given the desired characteristic equation
g A= +a "+ ta,

The state feedback gain matrix 1s
K=[0 0..11P'g(A)
gA) =A"+o A" o, Ata,l
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Observer Design

If the system is completely observable with a given set of outputs, then
it is possible to determine or estimate the states that are not directly

measured
“ y
Estimate of the matrix Observer A +

X . y=y-Cx
‘ x = AX+Bu+Ly )

C

L is the observer gain matrix and to be determined
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The goal of the observer is to provide an estimate X so that

X —> Xast —> .

We do not know x(z) ) precisely; we should provide an intial
estimate X(#( ) to the observer. The observer estimation error is
e(?) = x(¢) - x(¢). The observer design should produce e(z) — 0 as
[ —> 0.

Take the time derivative of the estimation error of the previous equation
e=x-%
%= Ax+Bu+L(y—Cx)

e= Ax+Bu—-Ax-Bu—-L(y-Cx)

e(t) = (A - LC)e(?)
e(t) > 0ast —> oas Det(AI-(A-LC))=0
has its all roots in the left half plane.
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E11.3: A system is described by the matrix equation. Determine
whether the system is controllable and observable.

- 10 1 0
X = 0 .3 X + | u;,y =2x,

P, =B AB]=B) 31}

Since P, 1s not equal to zero, the system 1s controllable.

The observability matrix is

sl

Since Det Q 1s equal to zero, therefore the system 1s unobservable!

17



E11.4: A system is described by the matrix equation. Determine
whether the system is controllable and observable.

-4 0] o ;
= an =
X 0 . X | u; Y =X

First find the controllability matrix

P.=|A AB]:E ﬂ

Since Det P, =0, the system is uncontrollable.

The observability matrix 1s

o C| |1 O
|CA| |-4 0
Since Det Q =0, the system 1s unobservable.

18



